Answer:
a.
![(dT)/(dt)=k(T-Tm); T(0)=190](https://img.qammunity.org/2020/formulas/mathematics/college/2lzxhnxiq8h3cc2svc6wcy2xkmuyas648s.png)
b.
![C_(0)=122](https://img.qammunity.org/2020/formulas/mathematics/college/b2dt3rsucyol3z03hdo2jtjbxkbfzl07sn.png)
c.
![k=-0.00259](https://img.qammunity.org/2020/formulas/mathematics/college/1jvmlak9nmfgjt6uyi5ufrur61xzsi2i24.png)
d.
minutos
Explanation:
a. Newton's law of cooling states that the speed with which a body is cooled is proportional to the difference between its temperature and that of the medium in which it is found. Then, the initial value problem is given by:
![Tm=68](https://img.qammunity.org/2020/formulas/mathematics/college/jkmkecpz2b1t8vq6vagnmfv19ea3jrgg58.png)
![(dT)/(dt)=k(T-Tm); T(0)=190](https://img.qammunity.org/2020/formulas/mathematics/college/2lzxhnxiq8h3cc2svc6wcy2xkmuyas648s.png)
b. The differential equation obtained is a differential equation of separable variables:
![(dT)/(T-Tm)=kdt\\\\\int {(dT)/(T-Tm)}=\int{kdt}\\\\Ln|T-Tm|=kt+C\\\\T(t)=C_(0)e^(kt)+Tm=C_(0)e^(kt)+68\\\\T(0)=C_(0)e^(k(0))+68=190\\\\C_(0)=122](https://img.qammunity.org/2020/formulas/mathematics/college/kgiqd4dzzj7ldifij2z5hu1hjd586rz8pf.png)
c. After 33 minutes of serving the coffee has cooled to 180°:
![T(33)=122e^(33k)+68=180\\\\e^(33k)=(112)/(122)\\\\33k=Ln((112)/(122))\\\\k=-0.00259](https://img.qammunity.org/2020/formulas/mathematics/college/85xzdmxydhwzx922by5mv28n0kq4rje8sf.png)
d.
![150=122e^(-0.00259t)+68\\\\Ln((150-68)/(122))=-0.00259t\\\\t=153.39838\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/vr4rf834o3ulw3iilhfpzqkh1p64yl5qfn.png)