Answer:
-√5/5
Explanation:
Given the following
sin(A) = 4/5
sinB - -2√5/5
SinA = 4/5 = opp/hyp
We can get cosA
opposite = 4
hypotenuse = 5
Adj = √5²-4² (pythagoras theorem)
Adj = √25-16
Adj = √9
Adj = 3
Cos A = Adj/hyp
Cos A = 3/5
Also
Sin B = -2√5/5 = opp/hyp
opposite = -2√5
hypotenuse = 5
Adj = √5²-(2√5)² (pythagoras theorem)
Adj = √25-20
Adj = √5
Cos B = Adj/hyp
Cos B = √5/5
Evaluate cos (A-B)
cos (A-B) = cosAcosB + sinAsinB
cos (A-B) = 3/5(√5/5)+4/5(-2√5/5)
cos (A-B) = 3√5/25 - 8√5/25
cos (A-B) = -5√5/25
cos (A-B) = -√5/5
Hence the value of cos (A-B) is -√5/5