The electric field intensity as a function of the distance
from the center of the ring is given by:
![E(x) = (Qx)/(4\pi\varepsilon_0 (x^2 + a^2)^(3/2)).](https://img.qammunity.org/2020/formulas/physics/college/rz3qcnmai6wj9nsxsdp901htzru1mggioz.png)
Taking the derivative of
with respect to
, we get:
![\frac{\textrm{d}E}{\textrm{d}x} = (Q)/(4\pi\varepsilon_0)\frac{\textrm{d}}{\textrm{d}x}\left[(x)/((x^2 + a^2)^(3/2))\right].](https://img.qammunity.org/2020/formulas/physics/college/6l6ura116tctv4ace9gs3gcb2fyv935f5i.png)
We will now use the quotient rule:
![\frac{\textrm{d}}{\textrm{d}x}\left[(x)/((x^2 + a^2)^(3/2))\right] = \frac{\frac{\textrm{d}x}{\textrm{d}x}(x^2+a^2)^(3/2) - x\frac{\textrm{d}}{\textrm{d}x}\left[(x^2+a^2)^(3/2)\right]}{\left[(x^2+a^2)^(3/2)\right]^2}.](https://img.qammunity.org/2020/formulas/physics/college/yc5q8mpgqelui2tg7izalrorirhjl5ypw3.png)
We now use the chain and power rules to get:
![\frac{\textrm{d}}{\textrm{d}x}\left[(x^2+a^2)^(3/2)\right] = (3)/(2)(x^2+a^2)^(1/2)\frac{\textrm{d}}{\textrm{d}x}(x^2 + a^2) = (3)/(2)√(x^2 + a^2)2x = 3x√(x^2 + a^2).](https://img.qammunity.org/2020/formulas/physics/college/sam3z40tj5t85zuwxnxm7ne1h2dntwu4qn.png)
And also:
![\frac{\textrm{d}x}{\textrm{d}x} = 1.](https://img.qammunity.org/2020/formulas/physics/college/3c8tfj53oshki4pn89hv4o0wp4edj17s4l.png)
The derivative is then:
![\frac{\textrm{d}E}{\textrm{d}x} = (Q)/(4\pi\varepsilon_0)((x^2+a^2)^(3/2) - 3x^2√(x^2 + a^2))/((x^2+a^2)^3).](https://img.qammunity.org/2020/formulas/physics/college/mo5wlslgli6ngoy6mbfyqcy9vxktm4o9iu.png)
Since the denominator is never zero and
, we can write:
![\frac{\textrm{d}E}{\textrm{d}x} = 0 \iff(x^2+a^2)^(3/2) - 3x^2√(x^2 + a^2) = 0 \iff (x^2 + a^2)^(3/2) = 3x^2√(x^2+a^2).](https://img.qammunity.org/2020/formulas/physics/college/1rn7emd8mb8wgvcbyxd4xoqks6b5sdcv99.png)
Dividing both sides of the equation by
, we get:
![x^2 + a^2 = 3x^2 \iff 2x^2 = a^2 \iff x^2 = (a^2)/(2) \iff x = \pm (a)/(√(2)), \textrm{ with } a > 0.](https://img.qammunity.org/2020/formulas/physics/college/bev2nls833pyfwjeuj7ki6l5fdm58wufi3.png)
We now need to check whether this is a maximum, a minimum or a saddle point. We can use the second derivative test, but there's an easier way. Since
,
and
for
,
necessarily has a maximum, since
is continuous.
Since we want positive values of
, the solution is:
![x = (a)/(√(2)).](https://img.qammunity.org/2020/formulas/physics/college/g5i2xreclhv0n8wv0tqm55jfva5799716l.png)