Answer:
The work done was W=720lb.ft
Step-by-step explanation:
Here weight is a lineal function of the vertical position. Let's put it in the following way:
![w(y)=ay+b](https://img.qammunity.org/2020/formulas/physics/high-school/le8dm328s7og9sbnayzlkdyi2h3kg1muxr.png)
where w is the weight and y is the vertical position (how high it is the bag).
So, from the information given:
⇒
![a0+b=b=144lb](https://img.qammunity.org/2020/formulas/physics/high-school/s1e0z0nwb4pb4d4incm8wqnxsfdb5zxjnk.png)
⇒
⇒
![a=(72lb-144lb)/(10ft) =-7.2(lb)/(ft)](https://img.qammunity.org/2020/formulas/physics/high-school/jk3em8bzzlhkmilw1a9det1753yivpqzoq.png)
∴
![w(y)=-7.2(lb)/(ft)y+144lb](https://img.qammunity.org/2020/formulas/physics/high-school/4gmfyma44bsy7czjc6stwrzs3u56oqon3p.png)
So, the work done will be:
![W=\int\limits^(10ft)_0 {w(y)} \, dy =\int\limits^(10ft)_0 {-7.2(lb)/(ft)y+144lb} \, dy = \int\limits^(10ft)_0 {-7.2(lb)/(ft)y} \, dy + \int\limits^(10ft)_0 {144lb} \, dy=](https://img.qammunity.org/2020/formulas/physics/high-school/iq021xygf4e9y9qrtqngo3hj9dnllook09.png)
![= -7.2(lb)/(ft)(1)/(2) ((10ft)^2-0^2) + 144lb. 10ft=720lb.ft](https://img.qammunity.org/2020/formulas/physics/high-school/pz4elw7ent0iyl6cuy0p98b01gm0vuquph.png)
∴ W=720lb.ft