Answer:
There is no solution for this system
Explanation:
I am going to solve this system by the Gauss-Jordan elimination method.
The Gauss-Jordan elimination method is done by transforming the system's augmented matrix into reduced row-echelon form by means of row operations.
We have the following system:
![2x_(1) - x_(2) + 3x_(3) = -10](https://img.qammunity.org/2020/formulas/mathematics/college/o5wwjqddcaaaclf6a5lwycj1fyeexqkwux.png)
![x_(1) - 2x_(2) + x_(3) = -3](https://img.qammunity.org/2020/formulas/mathematics/college/bfyntdbl2b9lnpzjirwebs84go3v40133y.png)
![x_(1) - 5x_(2) + 2x_(3) = -7](https://img.qammunity.org/2020/formulas/mathematics/college/zsukmmcflhq7h5cs739td44os4vs29ipkw.png)
This system has the following augmented matrix:
![\left[\begin{array}{ccc}1&-3&4|-4\\3&-7&7|-8\\-4&6&-1|7\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/9zqkju8ns8ydmtlnvd67amtxi3c5jnb9st.png)
We start reducing the first row. So:
![L2 = L2 - 3L1](https://img.qammunity.org/2020/formulas/mathematics/college/ui2ikup84w8w55gt9qe5jrly1a7kevcajv.png)
![L3 = L3 + 4L1](https://img.qammunity.org/2020/formulas/mathematics/college/iumms489aydbhmnjk2kfmzwh6z3bu18p46.png)
Now the matrix is:
![\left[\begin{array}{ccc}1&-3&4|-4\\0&2&-5|4\\0&-6&15|-9\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/x2jvikea8gqidaj1ytmyh9dg0kdbvtp3he.png)
We divide the second line by 2:
![L2 = (L2)/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/xpb0e69n5xv82by87xc58fsd69zf9rddr1.png)
And we have the following matrix:
![\left[\begin{array}{ccc}1&-3&4|-4\\0&1&(-5)/(2)|2\\0&-6&15|-9\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/wnirxvpx56ki57l43tcc7ckhjgew2ybcm9.png)
Now we do:
![L3 = L3 + 6L2](https://img.qammunity.org/2020/formulas/mathematics/college/g9fvmenikq9msx62vlsx6h3bvh6gkhsh0q.png)
So we have
![\left[\begin{array}{ccc}1&-3&4|-4\\0&1&(-5)/(2)|2\\0&0&0|3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/n80vhbehdsa30nbinbicl463ok6hr3cbdc.png)
This reduced matrix means that we have:
![0x_(3) = 3](https://img.qammunity.org/2020/formulas/mathematics/college/3j650rw9bdyijelngyocnlv9chvnjz2ioc.png)
Which is not possible
There is no solution for this system