Answer:
Equilibrium constant =
![2.23 * 10^(83)](https://img.qammunity.org/2020/formulas/chemistry/college/9e6xxr1ztzkqdamukuedsduuuqllb56uxq.png)
Step-by-step explanation:
![Zr(s) + O_2(g) \rightarrow ZrO_2(s)](https://img.qammunity.org/2020/formulas/chemistry/college/6qbsjk7zf39o91wgln53kf7los3cfsd9p8.png)
= 2.463 V
Equilibrium constant is related with
as
![E_(cell)=E^0_(cell) - (2.303 RT)/(nF) ln k_(eq)](https://img.qammunity.org/2020/formulas/chemistry/college/kkl0j1u7hepif7g889z07vqjzyllrhnlqj.png)
In standard condition,
T = 25 °C = 25 + 273 = 298 K
F = 96500 C mol^-1
R = 8.314
![J\ K^(-1)mol^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/une1otwospxttmbl4gewwupub90y8x30eh.png)
On substituting values, the above expression becomes:
![E_(cell)=E^0_(cell) - (0.059)/(n) log k_(eq)](https://img.qammunity.org/2020/formulas/chemistry/college/9gfgwve1k2sf81vo4rrxac1sbhtmc2rra0.png)
n = 2
At equilibrium,
![E_(cell)= 0](https://img.qammunity.org/2020/formulas/chemistry/college/mf1zlquwl6j25flilfvhqsi350k9kzh7r8.png)
![0=E^0_(cell) - (0.059)/(2) log k_(eq)](https://img.qammunity.org/2020/formulas/chemistry/college/gjw6tst25asl7zh6br3nrx55y9hxxn2d7m.png)
![log k_(eq)=(2 * 2.463)/(0.059)](https://img.qammunity.org/2020/formulas/chemistry/college/gbw0bw3duf5tb16b8oii55wdbujxjpts1a.png)
= 83.35
![K_(eq) = antilog 83.35 = 2.23 * 10^(83)](https://img.qammunity.org/2020/formulas/chemistry/college/y8c9kybmkcu3lnx4nmqtz3wca264q5vxer.png)