Answer:
The time taken by missile's clock is
![4.6* 10^(6) s](https://img.qammunity.org/2020/formulas/physics/college/7wdpkq2dgnwwzav5y0v2xqqsyfc49ejez1.png)
Solution:
As per the question:
Speed of the missile,
![v_(m = 6.5* 10^(3)) m/s](https://img.qammunity.org/2020/formulas/physics/college/o904d7cxls61z8p8n8div4veho2p28jdiq.png)
Now,
If 'T' be the time of the frame at rest then the dilated time as per the question is given as:
T' = T + 1
Now, using the time dilation eqn:
![T' = \frac{T}{\sqrt{1 + ((v_(m))/(c))^(2)}}](https://img.qammunity.org/2020/formulas/physics/college/jv4vyc4g6l7gz7hphx0xw65zi12ngxm951.png)
![(T')/(T) = \frac{1}{\sqrt{1 + ((v_(m))/(c))^(2)}}](https://img.qammunity.org/2020/formulas/physics/college/gqyubg19r9ai0xnp399rzm83inmvizjk5x.png)
![(T + 1)/(T) = \frac{1}{\sqrt{1 + ((v_(m))/(c))^(2)}}](https://img.qammunity.org/2020/formulas/physics/college/n7czcoxgdulharwzw4zx97ek6qbgip6l0v.png)
![1 + (1)/(T) = \frac{1}{\sqrt{1 + ((v_(m))/(c))^(2)}}](https://img.qammunity.org/2020/formulas/physics/college/d19aqf05l7syr2ox7z77g8hesanmzvnds7.png)
(1)
Using binomial theorem in the above eqn:
We know that:
![(1 + x)^(a) = 1 + ax](https://img.qammunity.org/2020/formulas/physics/college/80s2o93wkbh4xztep6dcxpc2uf7fu2x7j1.png)
Thus eqn (1) becomes:
![1 + (1)/(T) = 1 - (- 1)/(2).(v_(m)^(2))/(c^(2))](https://img.qammunity.org/2020/formulas/physics/college/s9b8sxg4u20ja0wa3zbn0cooyxwkafrdci.png)
![T = (2c^(2))/(v_(m)^(2))](https://img.qammunity.org/2020/formulas/physics/college/tl5la83ob29ccxt8sl842ht37ue8hyqhk8.png)
Now, putting appropriate values in the above eqn:
![T = (2(3* 10^(8))^(2))/((6.5* 10^(3))^(2))](https://img.qammunity.org/2020/formulas/physics/college/m82brvt2vf94bkb0xuapfeo2hc5rm4k3t7.png)
![T = 4.6* 10^(6) s](https://img.qammunity.org/2020/formulas/physics/college/119bnsuvqbkvii7b97c0m1891bvkjd5zzv.png)