Answer:
![1\,\,cm/min](https://img.qammunity.org/2020/formulas/mathematics/college/3g8cll77f2yc09m6mctmoald1mscfd84tn.png)
Explanation:
Let V be the volume of cube and x be it's side .
We know that volume of cube is
i.e.,
![x^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qp0q5tvpi7vm1sn3ub35b3bk626a6xhv2q.png)
Given :
![\frac{\mathrm{d} V}{\mathrm{d} t}=1200\,\,cm^3/min](https://img.qammunity.org/2020/formulas/mathematics/college/3hcj9koyh0xorzfun4a1xcgzwyok04uzju.png)
![x=20\,\,cm](https://img.qammunity.org/2020/formulas/mathematics/college/acl15fnxwmzpviyhw634papqvb2ez1pcqx.png)
To find :
![\frac{\mathrm{d} x}{\mathrm{d} t}](https://img.qammunity.org/2020/formulas/mathematics/college/2cy4avksgqjvd2tc3bqapj6uuwdb271g81.png)
Solution :
Consider equation
![V=x^3](https://img.qammunity.org/2020/formulas/mathematics/college/m0e7d9ni2qezhsbs5np9xut7fsj39msrag.png)
On differentiating both sides with respect to t , we get
![\frac{\mathrm{d} V}{\mathrm{d} t}=3x^2\left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )\\1200=3(20)^2\left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )\\\frac{\mathrm{d} x}{\mathrm{d} t} =(1200)/(3(20)^2)=(1200)/(3* 400)=(1200)/(1200)=1\,\,cm/min](https://img.qammunity.org/2020/formulas/mathematics/college/1v4xvb4n14a6ip30jmy4uop3odgluoqf05.png)
So,
Length of the side is increasing at the rate of
![1\,\,cm/min](https://img.qammunity.org/2020/formulas/mathematics/college/3g8cll77f2yc09m6mctmoald1mscfd84tn.png)