Answer:
1.6 g
Step-by-step explanation:
When they change temperatures their diameters will change following these equations:
D'(t1) = D(t0) * (1 + a(Cu) * (t1 - t0(Cu)))
d'(t1) = d(t0) * (1 + a(Al) * (t1 - t0(Al)))
The sphere goes inside the ring when they are at thermal equilibrium (at the same temperature, which is t1). Their diameters will be the same.
D'(t1) = d'(t1)
D(t0) * (1 + a(Cu) * (t1 - t0(Cu))) = d(t0) * (1 + a(Al) * (t1 - t0(Al)))
D(t0) + D(t0) * a(Cu) * t1 - D(t0) * a(Cu) * t0(Cu) = d(t0) + d(t0) * a(Al) * t1 - d(t0) * a(Al) * t0(Al)
D(t0) * a(Cu) * t1 - d(t0) * a(Al) * t1 = D(t0) * a(Cu) * t0(Cu) - d(t0) * a(Al) * t0(Al) - D(t0) + d(t0)
(D(t0) * a(Cu) - d(t0) * a(Al)) * t1 = D(t0) * a(Cu) * t0(Cu) - d(t0) * a(Al) * t0(Al) - D(t0) + d(t0)
t1 = (D(t0) * a(Cu) * t0(Cu) - d(t0) * a(Al) * t0(Al) - D(t0) + d(t0)) / (D(t0) * a(Cu) - d(t0) * a(Al))
t1 = (3.71382 * 17*10^-6 * 0) - 3.72069 * 23*10^-6 * 83 - 3.71382 + 3.72069) / (3.71382 * 17*10^-6 - 3.72069 * 23*10^-6)
t1 = 10.37 C
To reach this temperature they both exchange heat.
Q(Al) + Q(Cu) = 0
The copper will gain heat (positive) and the aluminum will lose heat (negative)
Q(Al) = -Q(Cu)
mAl * CpAl * (t1 - t0Al) = - mCu * CpCu* (t1 - t0Cu)
mAl = -(mCu * CpCu* (t1 - t0Cu)) / (CpAl * (t1 - t0Al))
mAl = -(0.026 * 386 * (10.37 - 0)) / (900 * (10.37 - 83))
mAl = 1.6*10^-3 kg = 1.6 g