Answer:
The thermal efficiency of cycle is 42.6%.
Step-by-step explanation:
Given that
![T_1=300 K](https://img.qammunity.org/2020/formulas/engineering/college/8zr0gn6qct1k96kz7qzh6muy5md8dqmtd2.png)
![P_1=100KPa](https://img.qammunity.org/2020/formulas/engineering/college/y16tquttzymj68esafwe4eusoswarxhs58.png)
mass flow rate = 6 kg/s
Compression ratio = 7
Turbine inlet temperature = 1200 K
γ=1.4
We know that thermal efficiency of Brayton cycle given as
![\eta=1-\frac{1}{r_p^{(\gamma-1)/(\gamma)}}](https://img.qammunity.org/2020/formulas/engineering/college/nxk75v4v2r37u8z9tmnnn2ymlhoyjh0cct.png)
Now by putting the values
![\eta=1-\frac{1}{r_p^{(\gamma-1)/(\gamma)}}](https://img.qammunity.org/2020/formulas/engineering/college/nxk75v4v2r37u8z9tmnnn2ymlhoyjh0cct.png)
![\eta=1-\frac{1}{7^{(1.4-1)/(1.4)}}](https://img.qammunity.org/2020/formulas/engineering/college/v8yhwspofvdpljrztljaf1g67xd9nocz7c.png)
η=0.426
So the thermal efficiency of cycle is 42.6%.