Answer:
u = 12962.11 m/s
Step-by-step explanation:
Given that,
The radius of mercury,
![r=2440\ km=2440* 10^3\ m](https://img.qammunity.org/2020/formulas/physics/college/7zl59u89a2byfnyll4hzryhn3trqqm4brz.png)
Mass of Mercury,
![M=3* 10^(24)\ kg](https://img.qammunity.org/2020/formulas/physics/college/habk6w1b8qp1rt6w9teurqnh3r6gfr6o0q.png)
Final speed of the object, v = 2000 m/s
Let u is its initial speed when the object is far from Mercury. It can be calculated by applying the conservation of energy as :
Initial kinetic energy + gravitational potential energy = final kinetic energy
![(1)/(2)mu^2+(-(GmM)/(r))=(1)/(2)mv^2](https://img.qammunity.org/2020/formulas/physics/college/akgbnu10jr12jxyam3q17w27azviu9ehvm.png)
![(1)/(2)u^2+(-(GM)/(r))=(1)/(2)v^2](https://img.qammunity.org/2020/formulas/physics/college/gwh4cjglmquadsnltk06a5wu9jy4bq0i9t.png)
![(1)/(2)u^2=(1)/(2)v^2+(GM)/(r)](https://img.qammunity.org/2020/formulas/physics/college/17d7xpttq99r4e00ny17m8m59wjq3wl5t1.png)
![u^2=2* ((1)/(2)v^2+(GM)/(r))](https://img.qammunity.org/2020/formulas/physics/college/pebn1gi98qzeytbtvn1odu2fir6e5qm4my.png)
![u^2=2* ((1)/(2)(2000)^2+(6.67* 10^(-11)* 3* 10^(24))/(2440* 10^3))](https://img.qammunity.org/2020/formulas/physics/college/ukz66y4bpipsav1aia4nfqr9yo8abqr8nw.png)
u = 12962.11 m/s
So, the initial speed of the object is 12962.11 kg. Hence, this is the required solution.