105k views
4 votes
Write down the explicit solution for each of the following: a) x’=t–sin(t); x(0)=1

b) x’+2x=4; x(0)=5
c) x’’+4x=0; x(0)=0; x’(0)=1

1 Answer

2 votes

Answer:

a) x=(t^2)/2+cos(t), b) x=2+3e^(-2t), c) x=(1/2)sin(2t)

Explanation:

Let's solve by separating variables:


x'=(dx)/(dt)

a) x’=t–sin(t), x(0)=1


dx=(t-sint)dt

Apply integral both sides:


\int {} \, dx=\int {(t-sint)} \, dt\\\\x=(t^2)/(2)+cost +k

where k is a constant due to integration. With x(0)=1, substitute:


1=0+cos0+k\\\\1=1+k\\k=0

Finally:


x=(t^2)/(2) +cos(t)

b) x’+2x=4; x(0)=5


dx=(4-2x)dt\\\\(dx)/(4-2x)=dt \\\\\int {(dx)/(4-2x)}= \int {dt}\\

Completing the integral:


-(1)/(2) \int{((-2)dx)/(4-2x)}= \int {dt}

Solving the operator:


-(1)/(2)ln(4-2x)=t+k

Using algebra, it becomes explicit:


x=2+ke^(-2t)

With x(0)=5, substitute:


5=2+ke^(-2(0))=2+k(1)\\\\k=3

Finally:


x=2+3e^(-2t)

c) x’’+4x=0; x(0)=0; x’(0)=1

Let
x=e^(mt) be the solution for the equation, then:


x'=me^(mt)\\x''=m^(2)e^(mt)

Substituting these equations in c)


m^(2)e^(mt)+4(e^(mt))=0\\\\m^(2)+4=0\\\\m^(2)=-4\\\\m=2i

This becomes the solution m=α±βi where α=0 and β=2


x=e^(\alpha t)[Asin\beta t+Bcos\beta t]\\\\x=e^(0)[Asin((2)t)+Bcos((2)t)]\\\\x=Asin((2)t)+Bcos((2)t)

Where A and B are constants. With x(0)=0; x’(0)=1:


x=Asin(2t)+Bcos(2t)\\\\x'=2Acos(2t)-2Bsin(2t)\\\\0=Asin(2(0))+Bcos(2(0))\\\\0=0+B(1)\\\\B=0\\\\1=2Acos(2(0))\\\\1=2A\\\\A=(1)/(2)

Finally:


x=(1)/(2) sin(2t)

User Gwendal
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories