Answer:
![224.9\ m^2](https://img.qammunity.org/2020/formulas/mathematics/college/d0ksdxyrgwtxochb3fvrpi1y0s0dfk0cpk.png)
Explanation:
An isosceles right triangle is a right triangle having two legs (other than hypotenuse ) of same length .
Given : The length of the hypotenuse of an isosceles right triangle is 30 meters.
Let x be the side length of the other two legs, then by using the Pythagoras theorem for right triangle , we have
![(30)^2=x^2+x^2\\\\\Rightarrow\ 900=2x^2\\\\\Rightarrow\ x^2=(900)/(2)\\\\\Rightarrow\ x^2=450\\\\\Rightarrow\ x=√(450)=√(9*25*2)=√(3^2*5^2*2)\\\Rightarrow\ x=3*5√(2)=15(1.414)=21.21](https://img.qammunity.org/2020/formulas/mathematics/college/2szuvilmqx4bcx8oxp4r00zqdontbc30wu.png)
Thus, the other two legs have side length of 21.21 m each.
Now, the area of a right triangle is given by :-
![A=(1)/(2)* base* height\\\\\Rightarrow\ A=(1)/(2)(21.21)*(21.21)=224.93205\approx224.9\ m^2](https://img.qammunity.org/2020/formulas/mathematics/college/tvr0n6frurh1ml5xf4nbyoesjpwwmvck1m.png)
Hence, the area of the given isosceles right triangle=
![224.9\ m^2](https://img.qammunity.org/2020/formulas/mathematics/college/d0ksdxyrgwtxochb3fvrpi1y0s0dfk0cpk.png)