Answer:
Net discharge per hour will be 3.5325
![m^3/hr](https://img.qammunity.org/2020/formulas/engineering/college/huty5sl2hmd7vf06zm498usrpsb0wlpxib.png)
Step-by-step explanation:
We have given internal diameter d = 25 mm
Time = 1 hour = 3600 sec
So radius
![r=(d)/(2)=(25)/(2)=12.5mm=12.5* 10^(-3)m](https://img.qammunity.org/2020/formulas/engineering/college/svnbptjca4j23ksyisse1yfiz2hj83ga80.png)
We know that area is given by
![A=\pi r^2=3.14* (12.5* 10^(-3))^2=490.625* 10^(-6)m^2](https://img.qammunity.org/2020/formulas/engineering/college/f24f8gdazdt63du2xkg245z8n737xfol1i.png)
We know that discharge is given by
, here A is area and V is velocity
So
![Q=AV=490.625* 10^(-6)* 2=981.25* 10^(-6)m^3/sec](https://img.qammunity.org/2020/formulas/engineering/college/yx2f5j5hbbdbdnyss8nk8fc9o9rjlbk1lr.png)
So net discharge in 1 hour =
![981.25* 10^(-6)m^3/sec* 3600=3.5325m^3/hour](https://img.qammunity.org/2020/formulas/engineering/college/rxgbbzzz3ibks8d0vazvgn6mqsizb9yy3v.png)