Answer:
![a=3,\text{ then } x\in(-\infty,\infty)\\ \\a\in(-\infty,3),\text{ then }x\in \left[(-4a-8)/(3-a),\infty\right)\\ \\a\in(3,\infty),\text{ then }x\in \left(-\infty, (-4a-8)/(3-a)\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3jad3zthxsr9xouswxu7c6qajvqrnsqnqp.png)
Explanation:
In the inequality
![3x+8+2ax\ge 3ax-4a\ \ \ (1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yw4bpgipaxj14lglzbll0zm5oah1dg8z2b.png)
a is an arbitrary real number.
Separate the terms with x into left side and the terms without x in the right side:
![3x+2ax-3ax\ge -4a-8\\ \\3x-ax\ge -4a-8\\ \\(3-a)x\ge -4a-8\ \ \ (2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3u19fxm88w7ffgl9m5248guydvydpksx3h.png)
First, look at the leading coefficient at x. If this coefficient is equal to 0 (when
), then the inequality is
![0\ge -4a-8\\ \\0\ge -12-8\ [\text{Substituted }a=3]\\ \\0\ge -20](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ljswhk67pqll08l39or3qfmz2reruk6kue.png)
This is true inequality for all x, so at
the inequality (1) has the solution
![x\in (-\infty,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7ot9tujnro88fqw5e8wv4htwipkh2a72j.png)
Now, if the leading coefficient
![3-a>0\\ \\a<3,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d6tisr6bwimk7t4fmocw6wd4qgklhe6oed.png)
then we can divide the inequality (2) by this positive number
and get
![x\ge (-4a-8)/(3-a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d3rp2r3wrgfzuk3wbx0q4vpwcuovj5xm57.png)
If the leading coefficient
![3-a<0\\ \\a>3,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y8dxlv6eplk6bvs5zjjppjpkp2l5geju7s.png)
then we can divide the inequality (2) by this negative number
and get
![x\le (-4a-8)/(3-a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cpb3vukmj7jeanq3s8if53d6l2rbf4ksuf.png)
So, the answer is
![a=3,\text{ then } x\in(-\infty,\infty)\\ \\a\in(-\infty,3),\text{ then }x\in \left[(-4a-8)/(3-a),\infty\right)\\ \\a\in(3,\infty),\text{ then }x\in \left(-\infty, (-4a-8)/(3-a)\right]](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3jad3zthxsr9xouswxu7c6qajvqrnsqnqp.png)