57.3k views
2 votes
Find the derivative of the given function with respect to the independent variable x or t. The symbols a, b and c are constants greater than 1. You are not required to combine like terms, reduce fractions, or otherwise simplify your final answer.

(1) y = (2/[ a+bx])^3
(2) y = (at^3 - 3bt)^3
(3) y = (t^b)e^(b/t)
(4) z = ax^2.sin (4x)

User Teecraft
by
5.6k points

1 Answer

4 votes

Answer:

(1)
y=((2)/(a+bx))^3

By differentiating w.r.t. x,


(dy)/(dx)=3((2)/(a+bx))^2* (d)/(dt)((2)/(a+bx))


=3((2)/(a+bx))^2* (-(2)/((a+bx)^2))


=-(24)/((a+bx)^4)

(2)
y=(at^3-3bt)^3

By differentiating w.r.t. t,


(dy)/(dt)=3(at^3-3bt)^2* (d)/(dt)(at^3-3bt)


=3(at^3-3bt)^2 (3at^2-3b)


=9t^2(at^2-3b)^2(at^2-b)

(3)
y=(t^b)(e^(b)/(t))

Differentiating w.r.t. t,


(dy)/(dt)=t^b* (d)/(dt)(e^(b)/(t))+(d)/(dt)(t^b)* e^(b)/(t)


=t^b(e^(b)/(t))* (d)/(dt)((b)/(t)) + bt^(b-1)(e^(b)/(t))


=t^be^(b)/(t)(-(b)/(t^2))+bt^(b-1)e^{(b)/(t)}

(4)
z = ax^2.sin (4x)

Differentiating w.r.t. x,


(dz)/(dt)=ax^2* (d)/(dx)(sin (4x))+sin (4x)* (d)/(dx)(ax^2)


=ax^2* cos(4x).4+sin (4x)(2ax)


=4ax^2cos (4x)+2ax sin (4x)

User Moriesta
by
6.3k points