57.3k views
2 votes
Find the derivative of the given function with respect to the independent variable x or t. The symbols a, b and c are constants greater than 1. You are not required to combine like terms, reduce fractions, or otherwise simplify your final answer.

(1) y = (2/[ a+bx])^3
(2) y = (at^3 - 3bt)^3
(3) y = (t^b)e^(b/t)
(4) z = ax^2.sin (4x)

User Teecraft
by
8.2k points

1 Answer

4 votes

Answer:

(1)
y=((2)/(a+bx))^3

By differentiating w.r.t. x,


(dy)/(dx)=3((2)/(a+bx))^2* (d)/(dt)((2)/(a+bx))


=3((2)/(a+bx))^2* (-(2)/((a+bx)^2))


=-(24)/((a+bx)^4)

(2)
y=(at^3-3bt)^3

By differentiating w.r.t. t,


(dy)/(dt)=3(at^3-3bt)^2* (d)/(dt)(at^3-3bt)


=3(at^3-3bt)^2 (3at^2-3b)


=9t^2(at^2-3b)^2(at^2-b)

(3)
y=(t^b)(e^(b)/(t))

Differentiating w.r.t. t,


(dy)/(dt)=t^b* (d)/(dt)(e^(b)/(t))+(d)/(dt)(t^b)* e^(b)/(t)


=t^b(e^(b)/(t))* (d)/(dt)((b)/(t)) + bt^(b-1)(e^(b)/(t))


=t^be^(b)/(t)(-(b)/(t^2))+bt^(b-1)e^{(b)/(t)}

(4)
z = ax^2.sin (4x)

Differentiating w.r.t. x,


(dz)/(dt)=ax^2* (d)/(dx)(sin (4x))+sin (4x)* (d)/(dx)(ax^2)


=ax^2* cos(4x).4+sin (4x)(2ax)


=4ax^2cos (4x)+2ax sin (4x)

User Moriesta
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories