39.0k views
1 vote
A class has 35 students, of which 16 are male and 19 are female. If 6 of the students are selected at random to form a committee, what is the probability that exactly 2 male students are selected?

User Goombah
by
8.4k points

1 Answer

3 votes

Answer:

The probability of choosing exactly 2 male and 4 female students =
\frac{\binom{16}{2}* \binom{19}{4}}{\binom{35}{6}}

Explanation:

We are given that a class has 35 students

Number of male=16

Number of female=19

We have to choose 6 students for committee

We have to find the probability that exactly 2 male students are selected

Probability=P(E)=
(number\;of\;favorable\;cases)/(total\;number\;of\;cases)

If we have to choose total 6 student in which 2 male and 4 female

Combination formula:


nC_r=(n!)/(r!(n-r)!)

Using the formula

The probability of choosing exactly 2 male and 4 female students =
\frac{\binom{16}{2}* \binom{19}{4}}{\binom{35}{6}}

User Bharath
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories