Answer:
60 cm
Explanation:
Parallelogram ABCD is shown in attached diagram. The diagonals of the parallelogram bisect each other, so
AE = EC
BE = ED
Ib DE = 3y + 6 cm, BE = 5y - 10 cm, then
![3y+6=5y-10\\ \\3y-5y=-10-6\\ \\-2y=-16\\ \\2y=16\\ \\y=8\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wxqbyjxvm211koe43bbuajtx6qwtuhrxhn.png)
Now, EC = 2y + 4, so
![EC=2\cdot 8+4=16+4=20\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m3sumeji8v60elr10kq0d22w3skmnzt08j.png)
Since AE = EC, then AE = 20 cm
The brace that connects points B and D has the length
![BD=BE+ED=3y+6+5y-10=8y-4=8\cdot 8-4=64-4=60\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j8cqzd2cpfr9layof89kkpd9bgynsmpa5b.png)
The brace that connects points A and C has the length
![AC=AE+EC=20+20=40\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eslf182nqkgnj1iiym39yw1oweo0lxf92b.png)