Answer:
a) v1 = a1*t1 = 2162 m/s
b) v2 = v1 + a2*(t2-t1) = 2591 m/s
c)
![Dt = D1 + D2 = (v1^(2))/(2*a1) + (v2^(2)-v1^(2))/(2*a2)=51004.5m](https://img.qammunity.org/2020/formulas/physics/college/8qac12fzhpzqp02syor37e2ktg3kjaemli.png)
Step-by-step explanation:
For any movement with constant acceleration:
Vf = vo + a*Δt. Replacing the propper values, with get the answers for parts a) and b):
v1 = a1*t1 = 2162 m/s
v2 = v1 + a2*(t2-t1) = 2591 m/s
Using the formula for displacement we can calculate the total distance asked on part c):
Solving for D and replacing the values for each part of the launch:
![D=(V_(f)^(2)-V_(o)^(2))/(2*a)](https://img.qammunity.org/2020/formulas/physics/college/pjf1990ext0ctr6wr5qvuspo9g3th6ixac.png)
D1 = 24863m
D2 = 26141.5m
Finally we add D1 + D2 for the total distance:
D = 51004.5m