Answer:
![y= (-5)/(2)x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ryt2x20eqi3n3oiqdi1jbpfskky3ob99le.png)
Explanation:
the line equation is 5x + 2y = 12
Solve for y to find out slope m
y=mx+b
![5x + 2y = 12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4h5bg3ngc4rjwbfhxc9hbxoxan7fc0z510.png)
Subtract 5x from both sides
![2y =-5x+12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kpbdf7qkcbd8gy6hyydpqf4oza7b2hqezh.png)
Divide both sides by 2
![y=(-5)/(2) x+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kvbqn855surw0o5fjmuixp4rkilooniivm.png)
slope = -5/2
Slope of parallel lines are same . So slope of parallel line is
![(-5)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kh53asrbj3tmnigzjxnt0fmethvwcijsya.png)
m=-5/2 , point (-2,4)
![y-y_1= m(x-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sybihg4w8ple94v5xj6tk7cdvedbwyg0b5.png)
![y-4= (-5)/(2)(x+2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7zo3yngl5kcnpegwhzb7mpkbm9karug0gj.png)
![y-4= (-5)/(2)x-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pcvkfldp3rjmh56f6z0twrza40v8fkcu4i.png)
Add 4 on both sides
![y= (-5)/(2)x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ryt2x20eqi3n3oiqdi1jbpfskky3ob99le.png)