Answer:
(a) 5.04 eV (B) 248.14 nm (c)
![1.21* 10^(15)Hz](https://img.qammunity.org/2020/formulas/physics/college/usbcqd01mjsky2v412d9qycda8tc8vtobb.png)
Step-by-step explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light
![E = h\\u = \frac{hc}{}\lambda](https://img.qammunity.org/2020/formulas/physics/college/6js6ajqkzomsun4o551ile24cru962od6x.png)
![E = h\\u = (6.67* 10^(-34) J.s* 3* 10^(8)m/s)/( 240* 10^(-9) m* 1.6* 10^(-19)J/eV)= 5.21 eV](https://img.qammunity.org/2020/formulas/physics/college/9ylvuuc76t32hq8uyhv98b5bd200rrr96t.png)
Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength
![\Phi _(0) = (hc)/(\lambda_(cuttoff))](https://img.qammunity.org/2020/formulas/physics/college/wpylfx7dizyxgz9hc1cnmc6sg0ybqkza6c.png)
![\lambda_(cuttoff)= (hc)/(\Phi _(0) )](https://img.qammunity.org/2020/formulas/physics/college/gpy3i57jillq63kyvlpte3rqwn66xeomii.png)
![\lambda_(cuttoff)= (6.67* 10^(-34) J.s* 3* 10^(8)m/s)/(5.04 eV* 1.6* 10^(-19)J/eV )=248.14 nm](https://img.qammunity.org/2020/formulas/physics/college/dl7q23yvb2iwf9xdlcypqrffjxi0hhxu0l.png)
Part (C) In this part we have to find the cutoff frequency
![\\u = (c)/(\lambda_(cuttoff))= (3* 10^(8)m/s)/(248.14 * 10^(-19) m )= 1.21* 10^(15) Hz](https://img.qammunity.org/2020/formulas/physics/college/ydapgcyefkanvo8053s7zu8k3fv56sb887.png)