Answer:
Ker(T) has basis
![\emptyset](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ggwkjmexldyoqpo5uq3h7fxy56sm59tqmd.png)
Range(T) has basis
Explanation:
If the matrix you wanted to represent is
, then:
.
So, to find ker(T) you must solve the homogenous equation
![A{\bf x}=\left(\begin{array}{cc}2&1\\3&4\end{array}\right) \left(\begin{array}{c} x&y \end{array}\right)=\left(\begin{array}{c}0&0\end{array}\right)](https://img.qammunity.org/2020/formulas/mathematics/college/p98rjlsuqyh7mplyhzn1meppbga4toaxw6.png)
Using Gauss elimination we obtain the simpler equivalent system
![\left(\begin{array}{cc} -6&3\\0&5\end{array}\right) \left(\begin{array}{c} x&y\end{array}\right)=\left(\begin{array}{c}0&0\end{array}\right)](https://img.qammunity.org/2020/formulas/mathematics/college/kle0hd5ui6jdhitmgk8xyq554brsy0v5ga.png)
Then, we have that
.
We have that
. On this case we say that the basis is the empty set
.
The range of
is the set of vectors of the form
![\left(\begin{array}{c} \alpha &\beta\end{array}\right)=\left(\begin{array}{cc}2&1\\3&4\end{array}\right)\left(\begin{array}{c}x&y\end{array}\right)=x\left(\begin{array}{c}2&3\end{array}\right)+y\left(\begin{array}{c}1&4\end{array}\right)](https://img.qammunity.org/2020/formulas/mathematics/college/p18iwh681qteq30w3rq37rg7e1y6z5a1hg.png)
So,
Where the angle brakets denotes the span.