Answer:
![(3)/(4)-(3)/(4)i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i8z5ev0gqinubwzpoit4zena0at5s4oprg.png)
Explanation:
![(9+3i)/(4+8i)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/thvpijmuqdw70vtj20ekesrfzytqmarifw.png)
I assume you want to rationalize the denominator (make it real). To do this, we will multiply top and bottom by bottom's cojugate.
![(9+3i)/(4+8i) \cdot (4-8i)/(4-8i)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w2mj775qyoyctcta0t7xc6hqgonavps990.png)
Use foil on top.
On bottom, since you are multiplying conjugates all you have to do is first times first and last times last.
![(9(4)+9(-8i)+3i(4)+3i(-8i))/(4(4)+(8i)(-8i))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rc9j9qm552xxq91no7kx55fh1wpbn6mepf.png)
![(36-72i+12i-24i^2)/(16-64i^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hdngres3sa8xc86itov64x1hclk850ntkk.png)
Recall
.
![(36-60i-24(-1))/(16+64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sbtl68a84reci70ocz7edshxzq5l41gkjt.png)
![(36+24-60i)/(16+64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/blvjhlil0s820vv61rtydr1enz7b1idylv.png)
![(60-60i)/(80)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q7hhkw55i56x35t90844gvbnf64jbnswcy.png)
Both the numerator and denominator share a common factor of 20:
![(3-3i)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iulbs00nakgqykrkzkzhwivoyo2316mkkh.png)
You could also seperate the fraction like so:
![(3)/(4)-(3)/(4)i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i8z5ev0gqinubwzpoit4zena0at5s4oprg.png)