Answer:
![P(t)=(5)/(2) \cdot (√(2))^t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xzd3cpbkefnypnfdl1zh7fgpxo3i22z9yg.png)
Explanation:
meants when
, that the value for
is 5.
So this gives us this equation:
![5=P_0 \cdot a^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/exqdjxdgfdvgrym6kmggiq0v8nsdptxw66.png)
meants when
, that the value for
is 10.
So this gives us this equation:
![10=P_0 \cdot a^4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g3g4xf69iwxf3elb46es0k3xuwjn3fgzoh.png)
So I take equation 2 and divide it be equation 1 I get:
![(10)/(5)=(P_0 \cdot a_4)/(P_0 \cdot a_2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gzpdk0y51fsoqmdr8c1mx3socafbx8qh31.png)
Simplifying:
![2=a^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q2zetww5fbrcvv58e7m72dvjui2gjsohmc.png)
Since the base for an exponential function can't be negative then
.
So plugging into one of my equations I began with gives me an equation to solve for the initial value,
:
![5=P_0 \cdot (√(2))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ssydjvowmaa1z45ymzzdhjf9zassk567lk.png)
![5=P_0 \cdot 2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8bnvobzhgyzz9bbky4gpt31nxpdpntenow.png)
Divide both sides by 2:
![(5)/(2)=P_0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jrpfvzneyg3nald3d2sfmg6lm1zc1pm4xb.png)
The function is:
![P(t)=(5)/(2) \cdot (√(2))^t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xzd3cpbkefnypnfdl1zh7fgpxo3i22z9yg.png)