132k views
4 votes
Calculate the amount of heat energy in KJ required to convert 45.0 g of ice at -15.5'C to steam at 124.0°C. (Cwater 118 Jig'c, Gee 2.03 Jig C, G team Jig C, molar heat of fusion of ice 6.01 * 10 J/mol; molar heat of vaporization of liquid water 4.07 * 10*J/mol 202 Short Answer Toolbar navigation B I V S E 1 E A A This question will be sent to your instructor for grading

User Georkings
by
5.0k points

1 Answer

3 votes

Answer : The enthalpy change or heat required is, 139.28775 KJ

Solution :

The conversions involved in this process are :


(1):H_2O(s)(-15.5^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(4):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(5):H_2O(g)(100^oC)\rightarrow H_2O(g)(124^oC)

Now we have to calculate the enthalpy change.


\Delta H=[m* c_(p,s)* (T_(final)-T_(initial))]+n* \Delta H_(fusion)+[m* c_(p,l)* (T_(final)-T_(initial))]+n* \Delta H_(vap)+[m* c_(p,g)* (T_(final)-T_(initial))]

where,


\Delta H = enthalpy change or heat required = ?

m = mass of water = 45 g


c_(p,s) = specific heat of solid water =
2.09J/g^oC


c_(p,l) = specific heat of liquid water =
4.18J/g^oC


c_(p,g) = specific heat of liquid water =
1.84J/g^oC

n = number of moles of water =
\frac{\text{Mass of water}}{\text{Molar mass of water}}=(45g)/(18g/mole)=2.5mole


\Delta H_(fusion) = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole


\Delta H_(vap) = enthalpy change for vaporization = 40.67 KJ/mole = 40670 J/mole

Now put all the given values in the above expression, we get


\Delta H=[45g* 4.18J/gK* (0-(-15.5))^oC]+2.5mole* 6010J/mole+[45g* 2.09J/gK* (100-0)^oC]+2.5mole* 40670J/mole+[45g* 1.84J/gK* (124-100)^oC]


\Delta H=139287.75J=139.28775KJ (1 KJ = 1000 J)

Therefore, the enthalpy change is, 139.28775 KJ

User Rishijd
by
4.7k points