205k views
4 votes
Find all x such that the distance between (-6,-6) and (x,-5) is 19.

User Masonya
by
8.1k points

2 Answers

3 votes


\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-6}~,~\stackrel{y_1}{-6})\qquad (\stackrel{x_2}{x}~,~\stackrel{y_2}{-5})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ \stackrel{d}{19}=√([x-(-6)]^2+[-5-6]^2)\implies 19=√((x+6)^2+(-11)^2) \\\\\\ 19^2=(x+6)^2+(-11)^2\implies 361 = (x^2+12x+36)+121 \\\\\\ 361=x^2+12x+157\implies 0=x^2+12x-204 \\\\[-0.35em] ~\dotfill


\bf ~~~~~~~~~~~~\textit{quadratic formula} \\\\ 0=\stackrel{\stackrel{a}{\downarrow }}{1}x^2\stackrel{\stackrel{b}{\downarrow }}{+12}x\stackrel{\stackrel{c}{\downarrow }}{-204} \qquad \qquad x= \cfrac{ - b \pm \sqrt { b^2 -4 a c}}{2 a}


\bf x = \cfrac{-12\pm√(12^2-4(1)(-204))}{2(1)}\implies x = \cfrac{-12\pm √(144+816)}{2} \\\\\\ x = \cfrac{-12\pm √(960)}{2}\implies x = \cfrac{-12\pm √(8^2\cdot 15)}{2}\implies x = \cfrac{-12\pm 8√(15)}{2} \\\\\\ x = -6\pm 4√(15)\implies x \approx \begin{cases} 9.49\\ -21.49 \end{cases}

User Quy Tang
by
8.6k points
4 votes

Answer:

-6 + 6√10 and -6 - 6√10

Explanation:

By the distance formula,

The distance between the points
(x_1, y_1) and
(x_2, y_2) is,


d=√((x_2-x_1)^2+(y_2-y_1)^2)

So, the distance between (-6,-6) and (x,-5) is,


d=√((x+6)^2+(-5+6)^2)


=√((x+6)^2+1)

According to the question,

d = 19 units,


\implies √((x+6)^2+1)=19


(x+6)^2+1 = 361


(x+6)^2=360


x+6=\pm √(360)


x = -6\pm 6√(10)

Hence, the possible values of x would be,

-6 + 6√10 and -6 - 6√10

User Mattt
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories