26.2k views
0 votes
If DEF is a straight angle, mDEG = (23r-3)and mGEF = 112x+8).
find each measure.​

If DEF is a straight angle, mDEG = (23r-3)and mGEF = 112x+8). find each measure.​-example-1
User Dynelight
by
8.4k points

1 Answer

3 votes

Answer:

Part 1) x=5

Part 2) m∠DEG=112°

Part 3) m∠GEF=68°

Part 4) m∠DEF=180°

Explanation:

step 1

Find the value of x

we know that

If m∠DEF is a straight angle

then

m∠DEF=180°

m∠DEF=m∠DEG+m∠GEF

so

180°=m∠DEG+m∠GEF

substitute the given values

180°=(23x-3)°+(12x+8)°

solve for x

180=35x+5

35x=180-5

35x=175

x=5

step 2

Find the measure of angle DEG

m∠DEG=(23x-3)°

substitute the value of x

m∠DEG=(23(5)-3)°

m∠DEG=112°

step 3

Find the measure of angle GEF

m∠GEF=(12x+8)°

substitute the value of x

m∠GEF=(12(5)+8)°

m∠GEF=68°

step 4

Find the measure of angle DEF

m∠DEF=m∠DEG+m∠GEF

we have

m∠DEG=112°

m∠GEF=68°

substitute

m∠DEF=112°+68°

m∠DEF=180° ----> is correct (the straight angle measure 180 degrees)

User Alexandre Dupriez
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories