Answer:
C.Restricted domain :
,
![f^(-1)(x)=-4+√(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xcs4ne9c2ulfyl4n6kuq72y6m3s602fca3.png)
Explanation:
We are given that a function is not one - to-one.
![f(x)=(x+4)^2+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/31irh5x7am01x0v3v8zln3zbdjlzuyvp25.png)
Suppose
![y=(x+4)^2+3](https://img.qammunity.org/2020/formulas/mathematics/high-school/9sw7k9h19r6pbi5z86jvutcl1yujxpjdfg.png)
![y-3=(x+4)^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/zu5a35ig10zsr73zuugxirkq28ruhhdu4t.png)
![x+4=√(y-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ddas4eubg4ukjheqkz5qon41panv957glg.png)
![x=√(y-3)-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/w4bka7d5gsg7ttj4xh3q148nur2pxipe4d.png)
Hence,
![f^(-1)(x)=-4+√(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xcs4ne9c2ulfyl4n6kuq72y6m3s602fca3.png)
We know that domain of f(x) is converted into range of
and range of f(x) is converted into domain of
.
Substitute x=3 then we get
![f^(-1)(x)=-4](https://img.qammunity.org/2020/formulas/mathematics/high-school/5eaxcgiy91cf8wedfwf3tb9gjulbin63ac.png)
Domain of
![f^(-1)(x)=[3,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/xqe7f8ljiznj2mkktfqphxhpgefvve8qgz.png)
Range of
![f^(-1)(x)=[-4,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/lqi9y970xhjfd7i89766o0c0sutsnif7f1.png)
Domain of f(x)=
![[-4,\infty)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fteamra3ipginzekjfamh02udb74g3upfh.png)
Restricted domain :
![x\geq -4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oslm79bxzu7kldk9i9j4pz0yb53p7qp754.png)
Hence, restricted domain of f(x) that makes the function one-to-one .