Answer:
Percentage of bromine-88 left after 35.0 s = 23%
Step-by-step explanation:
Radioactive decay follows first order kinetics.
Given:
Half life of Br-88 = 16.3 s
time = 35.0 s
![ln(a_0)/(a) =K* t](https://img.qammunity.org/2020/formulas/chemistry/college/eqfuvemnazazlikciz4ae26qlniru0azbv.png)
where,
= Initial concentration of radioactive substance
a = Amount left after time 't'
K = rate constant
Half-life = 0.693/K
![K = (0.693)/(16.3) = 0.0425 s^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/eizm187dwjb0bt0ef6ga9cn1ezh6dato2c.png)
now, substitute the value of rate constant and t (35.0 s) in the formula,
![ln(a_0)/(a) =K* t](https://img.qammunity.org/2020/formulas/chemistry/college/eqfuvemnazazlikciz4ae26qlniru0azbv.png)
![ln(a_0)/(a) =0.0425* 35.0](https://img.qammunity.org/2020/formulas/chemistry/college/fpqrxccazh5hfz4y12oco877uwc0u7fe8s.png)
Let a0 (initial concentration of bromine-88) be 100.
![ln(100)/(a) = 1.4875](https://img.qammunity.org/2020/formulas/chemistry/college/klstefkf2rqr3clhhu1xt8oynvm08kasc4.png)
[a] = 22.6% = 23%
Percentage of bromine-88 left after 35.0 s = 23%