206k views
0 votes
Define the points ​P(negative 4−4​,negative 2−2​) and ​Q(33​,negative 4−4​). Carry out the following calculation. Find two vectors parallel to ModifyingAbove QP with right arrowQP with length 22.

1 Answer

3 votes

Answer:

The required vectors are
u=<-(14)/(√(53)),(4)/(√(53))> and
v=<(14)/(√(53)),-(4)/(√(53))>.

Explanation:

Given information: P(-4,-2) and Q(3,-4).

We need to find the two vectors parallel to
\overrightarrow {QP} with length 2.

If
A(x_1,y_1) and
B(x_2,y_2), then


\overrightarrow {AB}=<x_2-x_1,y_2-y_1>


|\overrightarrow {AB}|=√((x_2-x_1)^2+(y_2-y_1)^2)

Using the above formula we get

vector QP is,


\overrightarrow {QP}=<-4-3,-2-(-4)>=<-7,2>

Magnitude of vertor QP is,


|\overrightarrow {QP}|=√((-4-3)^2+(-2-(-4))^2)


|\overrightarrow {QP}|=√((-7)^2+(2)^2)


|\overrightarrow {QP}|=√(49+4)


|\overrightarrow {QP}|=√(53)

Using vector is


\widehat {QP}=\frac{\overline {QP}}{|\overline {QP}|}


\widehat {QP}=(1)/(√(53))<-7,2>


w=\widehat {QP}=(1)/(√(53))<-(7)/(√(53)),(2)/(√(53))>

Multiply vector w by 2 to get a parallel vector parallel of QP in same direction.


u=2w=<-(14)/(√(53)),(4)/(√(53))>

Multiply vector w by -2 to get a parallel vector parallel of QP in opposite direction.


v=-2w=<(14)/(√(53)),-(4)/(√(53))>

Therefore the required vectors are
u=<-(14)/(√(53)),(4)/(√(53))> and
v=<(14)/(√(53)),-(4)/(√(53))>.

User Tim Hoffman
by
6.2k points