Answer:
The lower limit for a 98% confidence interval for the population mean is 79.40.
Explanation:
Given : To estimate the average students' scores in a standardize test, a sample of 35 scores yielded a mean of 80 and a standard deviation of 9.
To find : What is a lower limit for a 98% confidence interval for the population mean?
Solution :
The confidence interval formula is given by,
![CI=\bar{x}\pm Z_c((\sigma)/(n))](https://img.qammunity.org/2020/formulas/mathematics/college/7lr2lk6i5fxgdsxrebmqa2sm20ckbnnugn.png)
The lower limit is
![CI=\bar{x}-Z_c((\sigma)/(n))](https://img.qammunity.org/2020/formulas/mathematics/college/xxpee1x25tnimcw2lut4nhlurf9u0xcov4.png)
Where,
is the mean
is the standard deviation
n=35 is the number of element
at 98% is 2.33.
Substitute all values in the formula,
![CI=80-(2.33)((9)/(35))](https://img.qammunity.org/2020/formulas/mathematics/college/16njy9nny3kmtph6dwdn936hl6g48j5mtj.png)
![CI=80-(2.33)(0.257)](https://img.qammunity.org/2020/formulas/mathematics/college/mw27cqho71nywrbpoglfsamp9ojcpvguj2.png)
![CI=80-0.59881](https://img.qammunity.org/2020/formulas/mathematics/college/d36c8k2tso5wra6fk2d108q10me20l90k4.png)
![CI=79.40](https://img.qammunity.org/2020/formulas/mathematics/college/jzu00m8tcisl4pc1qdpe80pyd5hqu6yq47.png)
Therefore, The lower limit for a 98% confidence interval for the population mean is 79.40.