Answer: 1.960
Explanation:
The value of z we use to calculate a confidence interval with a (
) confidence level is a two-tailed test value i.e. represented by :-
![z_(\alpha/2)](https://img.qammunity.org/2020/formulas/mathematics/college/3kewdm71t7bo63mjqa2tytjangr351d0rr.png)
Given : The level of confidence:
![1-\alpha=0.95](https://img.qammunity.org/2020/formulas/mathematics/college/gx79r1u49o76w9ryb7dmoo9j5upmsao470.png)
Then, significance level :
![\alpha: 1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/high-school/9x6075632zgcvqcj0z3yy9jc9lp14p66n9.png)
With the help of standard normal distribution table for z , we have
![z_(\alpha/2)=z_(0.05/2)=z_(0.025)=1.960](https://img.qammunity.org/2020/formulas/mathematics/college/zftxldvuornuaeckn3xkkjc8swhe84x2tf.png)
Hence, the value of z should be used to calculate a confidence interval with a 95% confidence level =1.960