Answer:
The total angular momentum of these hands is 1.20 kg m²/s.
Step-by-step explanation:
Given that,
Length of hour hand = 2.70 m
Length of minute hand = 4.50 m
Mass of hour hand = 60.0 kg
Mass of minute hand = 100 kg
We need to calculate the total angular momentum
Using formula of angular momentum
![L=I_(k)\omega_(k)+I_(m)\omega_(m)](https://img.qammunity.org/2020/formulas/physics/college/qf7b7vhfk0peaam2ocng5mryoppfcz6d4v.png)
![L=((ml_(h)^2)/(3))*(2\pi)/(T)+(ml_(m)^2)/(3)*(2\pi)/(T)](https://img.qammunity.org/2020/formulas/physics/college/mwni6ojvsan3hgweftxjw1qied65gvm0g6.png)
Where,
= length of hour hand
=length of minute hand
Put the value into the formula
![L=(60.0*(2.70)^2)/(3)*(2\pi)/(12*3600)+(100*(4.50)^2)/(3)*(2\pi)/(3600)](https://img.qammunity.org/2020/formulas/physics/college/wzo3dhzojelbbkfkm0244y9uqgau45n2zo.png)
![L=1.199 = 1.20\ kg m^2/s](https://img.qammunity.org/2020/formulas/physics/college/2jj7dxbnkjnzf3qpfgopdesmwrzi6iuvta.png)
Hence, The total angular momentum of these hands is 1.20 kg m²/s.