91.4k views
4 votes
A quadrilateral is graphed on a coordinate plane. If the vertices are A(2, 6), B(6, 0), C(2, –6) and D(–4, 0), which two points are farthest apart?

User Dafero
by
5.7k points

2 Answers

5 votes

Check the picture below.

A quadrilateral is graphed on a coordinate plane. If the vertices are A(2, 6), B(6, 0), C-example-1
User JMF
by
6.0k points
1 vote

Answer: A(2, 6) and C(2, -6)

Explanation:

The distance between any two points is given by :-


d=√((d-b)^2+(c-a)^2)

Given vertices : A(2, 6), B(6, 0), C(2, -6) and D(-4, 0)

Then,


AB=√((0-6)^2+(6-2)^2)=√((-6)^2+(4)^2)=√(36+16)\\\\=√(52)\approx7.211


BC=√((-6-0)^2+(2-6)^2)=√((-6)^2+(-4)^2)=√(36+16)\\\\=√(52)\approx7.211


CD=√((0-(-6))^2+(-4-2)^2)=√((6)^2+(-6)^2)=√(36+36)\\\\=√(72)\approx8.485


AD=√((0-2)^2+(-4-6)^2)=√((-2)^2+(-10)^2)=√(4+100)\\\\=√(104)\approx10.198


AC=√((-6-6)^2+(2-2)^2)=√((-12)^2)=√(144)\\\\=\12


BD=√((0-0)^2+(-4-6)^2)=√((-10)^2)=√(100)\\\\=10

Since, points A and C has the largest distance between them.

Therefore, the points A and C are the farthest points.

User The Ghost
by
5.3k points