112k views
0 votes
What carpet Burns in a deficiency of O2 a mixture of CO and CO2 forms.Carbon Burns in excess O2 to form only CO2 and CO Burns in excess O2 to form only CO2. Calculate ΔH for C(graphite +1/2O2) →CO(g).

User Wittjeff
by
5.6k points

1 Answer

2 votes

Answer:

Step-by-step explanation:

From the combustion of carbon, the reactions occurring in limited oxygen conditions are:


C(graphite) + (1)/(2)O_(2(g)) \to CO_((g))


C(graphite) + O_(2(g)) \to CO_(2(g))

If it occurs in excess, then any leftover CO changes to CO2. i.e.


C(graphite) + O_(2(g)) \to CO_(2(g)) ---- (1)


CO_((g)) + (1)/(2)O_((g)) \to CO_(2(g)) ----- (2)

From (1), the enthalpy change is:


\Delta H_(rxn1) = \Delta H^0_(fCO_2(g)) - ( \Delta H^0_(f C(graphite))+ \Delta H^0_(fCO_2(g))


\Delta H_(rxn1) =-393.5 \ kJ/mol -(0+0)


\Delta H_(rxn1) =-393.5 \ kJ/mol

From (2), the enthalpy change is:


\Delta_(rxn2) = \Delta H^0_(fCO_2(g)) - ( \Delta H^0_(fCO(g)) + (1)/(2) \Delta H^0_(fO_2(g)))


\Delta_(rxn2) = -393.5 \ kJ/mol -(-110.5 + (1)/(2)(0))


\Delta_(rxn2) = -283.0 \ kJ/mol

Subtracting (2) from (1), we get:


C(graphite) + O_(2(g)) \to CO_(2(g)) \ \ \ \Delta H_(rxn) = -393.5 \ kJ/mol}


CO_((g)) + (1)/(2) O_2(g) \to CO_(2(g))} \ \ \ \Delta H _(rxn2) = -283.0 \ kJ/mol


C(graphite) + O_(2(g)) \to CO (g) + (1)/(2)O_(2(g)) \ \ \ \Delta H_(rxn) = -110.5 \ kJ/mol


C(graphite) + (1)/(2) O_(2(g)) \to CO (g) \ \ \ \Delta H_(rxn) = -110.5 \ kJ/mol

The enthalpy change ΔH of the reaction = -110.5 kJ/mol

User Marcin Kunert
by
6.7k points