Answer:
(A) 2652.49 ohm (b) 91937.45311 Hz (c) (i) 12.022 A (II) 2.324 A
Step-by-step explanation:
We have given resistance R = 10 ohm
Capacitance C = 1 nF
Inductance of the coil L = 3 mH
(A) Inductive reactance
![X_L=\omega L=377* 3* 10^(-3)=1.131ohm](https://img.qammunity.org/2020/formulas/physics/college/s9wkuyyb5yesfxjw76ikfd2a83zssgtzqr.png)
Capacitive reactance
![X_C=(1)/(\omega C)=(1)/(377* 10^(-9))=2.6525* 10^6ohm](https://img.qammunity.org/2020/formulas/physics/college/tf7ug3f662q8x35m5uj14vgfaf28ble9bx.png)
Impedance
![Z=√(R^2+(X_C-X_L)^2)=√(10^2+(2652500-1.131)^2)=2652.49ohm](https://img.qammunity.org/2020/formulas/physics/college/83mpintxg22x6yppgp6mdsu9rqcrryqj6z.png)
(b) We know that resonance frequency
![f=(1)/(2\pi √(LC))=\frac{1}{2\pi \sqrt{3* 10^(-3)* 10^(-9)}}=91937.45311Hz](https://img.qammunity.org/2020/formulas/physics/college/uct8yyzmjlk8ik4cqjkfscqjj61am46laa.png)
(c) (i) At resonance condition
so only effective resistance is R
So maximum current
![i=(V)/(R)=((170)/(√(2)))/(10)=12.022A](https://img.qammunity.org/2020/formulas/physics/college/4u62gxytxqz4n6h5gu5lofz36ei1nqkmb6.png)
(ii) Current across the coil
![i=(voltage\ across\ the\ coil)/(impedence\ of\ the\ coil)=((3)/(√(2)))/(1.131)=2.324A](https://img.qammunity.org/2020/formulas/physics/college/rj1znecttu7hw0d2gamu596sys3gpb0g75.png)