187k views
3 votes
Let A and B be 4 x 4 matrices, with det(A) = 3 and det(B) = 5. Compute: 1. det(AB) – det(BA) 2. det(A²)+det(B2) 3. det(2A3B) 4. det(ATBA) 5. det(B-1AB)

User Thelma
by
4.8k points

1 Answer

1 vote

We have


\det(AB)=\det A\det B

for any two matrices
A,B, and


\det A^(-1)=\frac1{\det A}


\det A^\top=\det A


\det(kA)=k^n\det A

where
k is a constant and
n is the size of the matrix
A.

1.
\det(AB)-\det(BA)=\det A\det B-\det B\det A=0

2.
\det(A^2)+\det(B^2)=(\det A)^2+(\det B)^2=34

3.
\det(2A^3B)=2^4\det(A^3B)=16(\det A)^3\det B=2160

4.
\det(A^\top BA)=\det A^\top\det B\det A=45

5.
\det(B^(-1)AB)=\frac1{\det B}\det A\det B=\det A=3

User Lennart Schedin
by
5.0k points