Answer: The energy released in the given nuclear reaction is 1.3106 MeV.
Step-by-step explanation:
For the given nuclear reaction:
![_(19)^(40)\textrm{K}\rightarrow _(20)^(40)\textrm{Ca}+_(-1)^(0)\textrm{e}](https://img.qammunity.org/2020/formulas/chemistry/college/xik9ipt4dlcis12pmncfvyrv5gi6v0u0e8.png)
We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:
![\Delta m=\text{Mass of reactants}-\text{Mass of products}](https://img.qammunity.org/2020/formulas/physics/college/f76gg50d6y26ip67bemmexngtlbcfagjbc.png)
Putting values in above equation, we get:
![\Delta m=(39.963998-39.962591)=0.001407u](https://img.qammunity.org/2020/formulas/chemistry/college/ga9aewgbwxxed8a829i891uvriklvsgejb.png)
To calculate the energy released, we use the equation:
![E=\Delta mc^2\\E=(0.001407u)* c^2](https://img.qammunity.org/2020/formulas/chemistry/college/axjhc6ik9qfob9q7if08a6rc36gil8u9kn.png)
(Conversion factor:
)
![E=1.3106MeV](https://img.qammunity.org/2020/formulas/chemistry/college/yptivt6c5zre45m1062d4svkon55ql0a3g.png)
Hence, the energy released in the given nuclear reaction is 1.3106 MeV.