Answer:
After 0.24 hours Rahul and Kumi are closest to each other.
Explanation:
It is given that Rahul is 4 kilometers due south of the post office and traveling toward it at 10 kilometers per hour. It means length of leg1 after t hours is
![leg_1=4-10t](https://img.qammunity.org/2020/formulas/mathematics/college/eb5tpeajsrks9nb2zrjxnt8gdfnqr8n072.png)
At noon, Kumi is 2 kilometers due east of the post office and jogging easy away from it at 5 kilometers per hour. It means length of leg2 after t hours is
![leg_1=2+5t](https://img.qammunity.org/2020/formulas/mathematics/college/xigbwjh19og5olw6mdfaz3y69ey9y8unpm.png)
Using Pythagoras theorem,
![Hypotenuse^2=leg_1^2+leg_2^2](https://img.qammunity.org/2020/formulas/mathematics/college/ppqns7zdjkjf4v5hs5p5k73fjetmk4lwz3.png)
![S^2=(4-10t)^2+(2+5t)^2](https://img.qammunity.org/2020/formulas/mathematics/college/v1tf0lsgksdqhcq4jekajn27s90ksc8x7k.png)
Differentiate with respect to t.
![2S(dS)/(dt)=2(4-10t)(-10)+2(2+5t)(5)](https://img.qammunity.org/2020/formulas/mathematics/college/qoxseqqa6s58lvgki1jfufq2edkvoq65wj.png)
![2S(dS)/(dt)=2(-40+100t+10+25t)](https://img.qammunity.org/2020/formulas/mathematics/college/euiq9vg8lb66533iisaioe564k5t8atbmb.png)
Cancel out common factors.
![S(dS)/(dt)=125t-30](https://img.qammunity.org/2020/formulas/mathematics/college/30iu3fb3jk472qdai92z9opkmlfi422a2m.png)
Divide both sides by S.
![(dS)/(dt)=(125t-30)/(S)](https://img.qammunity.org/2020/formulas/mathematics/college/dqa5vtaok1dal3lufu5vm6nbo4iflg3ktj.png)
.... (1)
Equate
, to find critical values.
![(125t-30)/(√((4-10t)^2+(2+5t)^2))=0](https://img.qammunity.org/2020/formulas/mathematics/college/493h3nn4991vbk6fsn56d7ihyojavuvqmx.png)
![125t-30=0](https://img.qammunity.org/2020/formulas/mathematics/college/ey4q6xdx4ddfcxocqhtelr16ncv9ny2iz6.png)
![125t=30](https://img.qammunity.org/2020/formulas/mathematics/college/csze5jb4xye0es0yced0dkcu44mga0n6mn.png)
![t=(30)/(125)=0.24](https://img.qammunity.org/2020/formulas/mathematics/college/p6w3xz0bq4r19vl5v66g9nahf8ne1vstfb.png)
The critical value of the distance function is 0.24.
Differentiate (1) with respect to t.
![(dS)/(dt)=(125t-30)/(√((4-10t)^2+(2+5t)^2))](https://img.qammunity.org/2020/formulas/mathematics/college/53r6d1kj5i6uj1q0uy5j5an5zvs2w83f9b.png)
![(d^2S)/(dt^2)=(64 √(5))/((25 t^2 - 12 t + 4)^(3/2))](https://img.qammunity.org/2020/formulas/mathematics/college/exhdofrq61bzxn1idcbz2uon30esklxi3j.png)
Substitute t=0.24,
![(d^2S)/(dt^2)=(64 √(5))/((25 (0.24)^2 - 12 (0.24) + 4)^(3/2))\approx 34.94>0](https://img.qammunity.org/2020/formulas/mathematics/college/4h5q1zvxqi6fqv6pz082u2swe8o1tdnky0.png)
Since
, therefore the distance of Rahul and kumi is minimum at t=0.24.
Therefore, after 0.24 hours Rahul and Kumi are closest to each other.