Answer:
[/tex]
Explanation:
The generating function of a sequence is the power series whose coefficients are the elements of the sequence. For the sequence
![1,1,1,2,3,4,5,6,...](https://img.qammunity.org/2020/formulas/mathematics/college/yjrqb53nv73x7wvs07zfywarbguvddm4ex.png)
the generating function would be
![P(x)=1+x+x^2+2x^3+3x^4+4x^5+5x^6+...\\](https://img.qammunity.org/2020/formulas/mathematics/college/i9ch44vb7q698lq2uxue8upl21g9dwv1kq.png)
we can multiply P(x) by x to get
Note that
![P(x)-xP(x)=1+(2x^3-x^3)+(3x^4-2x^4)+(4x^5-3x^5)+(5x^6-4x^6)+...\\ \\=1+x^3+x^4+x^5+x^6+...=1+x^3(1+x+x^2+x^3+x^4+...)](https://img.qammunity.org/2020/formulas/mathematics/college/xuj5edpylvom4pjzgqvyqsawcly6ubvgae.png)
which for
can be rewritten as
![(1-x)P(x)=1+(x^3)/((1-x)) \quad \Rightarrow \\\\P(x)=(1)/((1-x))+(x^3)/((1-x)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/ou34rzvo74k93brv5clrqarxli6aoq749h.png)