Answer:
angular acceleration=
![2 (rad)/(s^(2) )](https://img.qammunity.org/2020/formulas/physics/college/svabw4sq1ly3ifbvr4t7p7ymdy8q3omnk6.png)
Step-by-step explanation:
Kinematic equation for uniformly accelerated circular motion:
![wf=wi+\alpha *t](https://img.qammunity.org/2020/formulas/physics/college/h1d1v78qfj9d9hijwtprub01yigdems77g.png)
wf=final angular speed
![((rad)/(s) )](https://img.qammunity.org/2020/formulas/physics/college/1hivqfftrw62okr8h1n1ixp66evpqhz55y.png)
wi=initial angular speed
![((rad)/(s) )](https://img.qammunity.org/2020/formulas/physics/college/1hivqfftrw62okr8h1n1ixp66evpqhz55y.png)
= angular acceleration
![((rad)/(s^(2) ) )](https://img.qammunity.org/2020/formulas/physics/college/nd4r6gyutm9rt77xm22c5nvi5l336uz4yg.png)
We replace wf=10
,wi=0, t=5s in the equation(1):
![10=0+\alpha *5](https://img.qammunity.org/2020/formulas/physics/college/awbhhim4irl90tipmkvw8oixis8fc2xd97.png)
![\alpha =(10)/(5)](https://img.qammunity.org/2020/formulas/physics/college/pxjqligsh64op55ic910ykj5b9cozfl312.png)
![\alpha =2 (rad)/(s^(2) )](https://img.qammunity.org/2020/formulas/physics/college/yg3tllt3oqc61lu5fazrxwpg5m4jgd4nl7.png)
The angular acceleration is 2
![(rad)/(s^(2) )](https://img.qammunity.org/2020/formulas/physics/college/ist50quoe3et99pag1d3sir0eggratl3o0.png)