Answer:
Option 1:
![(x-3)^2+(y-5)^2 = 74](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qva02stm574k1ljy7rv0b74nlwfep7o1vx.png)
Explanation:
Given
Centre: (h,k) = (3,5)
Point on circle = (-4,10)
The distance between Centre and point on circle will be the radius of the circle
The distance formula will be used to calculate distance
![r = \sqrt{(x_2-x_1)^(2)+(y_2-y_1)^(2)}\\r = \sqrt{(-4-3)^(2)+(10-5)^(2)}\\r=\sqrt{(-7)^(2)+(5)^(2)}\\r=√(49+25)\\r=√(74)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m2x8n5inzi27sntzdhgp2ioh0mvakw571o.png)
The standard equation of circle is:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/kmmm139x85fjht54s8zz0668styzp2e6cm.png)
Putting the values of h,k and r
![(x-3)^2+(y-5)^2 = (√(74))^2\\(x-3)^2+(y-5)^2 = 74](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dcnja51dmvko9ymua712yk46edsqcr1mh2.png)
Hence, first option is correct ..