81.5k views
0 votes
Verify sin^4x − sin^2x = cos^4x − cos^2x is an identity

User Lordlinier
by
8.2k points

2 Answers

1 vote

Explanation:

L.H.S

= sin⁴x − sin²x

= sin²x ( sin²x - 1 )

=(1-cos²x) (1-cos²x-1) [ Trigonometric formula " sin²x=1-cos²x " ]

= (1-cos²x) (-cos²x)

=-cos²x+ cos⁴x

= cos⁴x - cos²x

=R.H.S

User Elbik
by
8.3k points
3 votes

Answer:

It's an identity

Explanation:


\sin^4x-\sin^2x=\cos^4x-\cos^2x\\\\L_s=\sin^4x-\sin^2x=\sin^2x(\sin^2x-1)=\sin^2x(-\cos^2x)=-\sin^2x\cos^2x\\\\R_s=\cos^4x-\cos^2x=\cos^2x(\cos^2x-1)=\cos^2x(-\sin^2x)=-\sin^2x\cos^2x\\\\L_s=R_s\qquad\bold{CORRECT}


\text{Used:}\\\\\sin^2x+\cos^2x=1\Rightarrow\left\{\begin{array}{ccc}\cos^2x=1-\sin^2x\\\sin^2x=1-\cos^2x\end{array}\right\Rightarrow\left\{\begin{array}{ccc}-\cos^2x=\sin^2x-1\\-\sin^2x=\cos^2x-1\end{array}\right

User CptPH
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories