54.0k views
1 vote
Solve for x in the interval [0,2π]:

log₂cot(x) - 2log₄csc(2x) = log₂cos(x)

User Mako
by
8.8k points

1 Answer

4 votes

Answer:


x=(\pi)/(3)

Explanation:

The given logarithmic equation is
\log_2\cot x-2\log_4\csc 2x=\log_2\cos x.

We regroup to get:


\log_2\cot x-\log_2\cos x=2\log_4\csc 2x.

Apply the quotient property of logarithms on the LHS.


\log_2{(\cot x)/(\cos x)=2\log_4\csc 2x.

Apply the power rule and change of base on the RHS


\log_2{(1)/(\sin x)=(\log_2\csc^2 2x)/(\log_24).


\log_2 \csc x=(\log_2\csc^2 2x)/(2).


\log_2 \csc x=(\log_2\csc^2 2x)/(2).


\log_2 \csc x=\log_2\csc 2x.

We equate the arguments to get:


\csc 2x=\csc x


\csc 2x-\csc x=0

Or


(1)/(\sin 2x)-(1)/(\sin x)=0


\implies (1)/(2\sin x\cos x)-(1)/(\sin x)=0


(1-2\cos x)/(2\sin x \cos x)=0


\implies 1-2\cos x=0


\implies \cos x=0.5


\implies x=(\pi)/(3),(5\pi)/(3)

But
x=(5\pi)/(3) is an extraneous solution.

Therefore
x=(\pi)/(3) is the only solution in the interval [0,2π]

User Dgamboa
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories