53.9k views
1 vote
Solve for x in the interval [0,2π]:

log₂cot(x) - 2log₄csc(2x) = log₂cos(x)

User Mako
by
5.1k points

1 Answer

4 votes

Answer:


x=(\pi)/(3)

Explanation:

The given logarithmic equation is
\log_2\cot x-2\log_4\csc 2x=\log_2\cos x.

We regroup to get:


\log_2\cot x-\log_2\cos x=2\log_4\csc 2x.

Apply the quotient property of logarithms on the LHS.


\log_2{(\cot x)/(\cos x)=2\log_4\csc 2x.

Apply the power rule and change of base on the RHS


\log_2{(1)/(\sin x)=(\log_2\csc^2 2x)/(\log_24).


\log_2 \csc x=(\log_2\csc^2 2x)/(2).


\log_2 \csc x=(\log_2\csc^2 2x)/(2).


\log_2 \csc x=\log_2\csc 2x.

We equate the arguments to get:


\csc 2x=\csc x


\csc 2x-\csc x=0

Or


(1)/(\sin 2x)-(1)/(\sin x)=0


\implies (1)/(2\sin x\cos x)-(1)/(\sin x)=0


(1-2\cos x)/(2\sin x \cos x)=0


\implies 1-2\cos x=0


\implies \cos x=0.5


\implies x=(\pi)/(3),(5\pi)/(3)

But
x=(5\pi)/(3) is an extraneous solution.

Therefore
x=(\pi)/(3) is the only solution in the interval [0,2π]

User Dgamboa
by
4.9k points