Answer:
Lattice constant, d = 1.3 nm
Step-by-step explanation:
It is given that,
Wavelength,
![\lambda=0.92\ nm=0.92* 10^(-9)\ m](https://img.qammunity.org/2020/formulas/physics/college/o0dq20cgnwcbwjst8v5rjspg32m4dtrnv6.png)
You observe the first diffraction peak at an angle of 20.6°,
![\theta=20.6](https://img.qammunity.org/2020/formulas/physics/college/7m9m6dygrmegc73e8pm4vn03bzae4wull0.png)
Using Bragg's diffraction law as :
![2d\ sin\theta=n\lambda](https://img.qammunity.org/2020/formulas/physics/college/kb4p9x9pp4rj261m0vjb8tgxkfs52prd4j.png)
Here, n = 1
d = lattice constant
![d=(\lambda)/(2\ sin\theta)](https://img.qammunity.org/2020/formulas/physics/college/olmz8p1ao7vk7jnzg01vm3a8kyzp8pndhv.png)
![d=(0.92* 10^(-9))/(2\ sin(20.6))](https://img.qammunity.org/2020/formulas/physics/college/ss1ar8fka7pcs5kxeie1tct84zyutn84y4.png)
![d=1.30* 10^(-9)\ m](https://img.qammunity.org/2020/formulas/physics/college/whqezd1l1wevxgji9rqplxxuafz3slsb1t.png)
or
d = 1.3 nm
So, the lattice constant of the crystal is 1.3 nm. Hence, this is the required solution.