Answer:
9.069 KW
Step-by-step explanation:
The heat engine operates in a carnot cycle between 75°C to 492°C so the lower temperature
and the higher temperature
![T_H=492^(\circ)C=273+492=765K](https://img.qammunity.org/2020/formulas/physics/college/2gcu83dxyg1jyeclmmq73dh4xu5wk7uu1d.png)
Efficiency of the carnot cycle
![\eta =1-(T_L)/(T_H)=1-(348)/(765)=0.545](https://img.qammunity.org/2020/formulas/physics/college/pxgmsprv1ijagqyblqvensccsek819e4a6.png)
We know that
![\eta =(work\ done )/(heat\ absorbed)](https://img.qammunity.org/2020/formulas/physics/college/kznr5uog4iq59xip83v9rcdhr9cxvzvqnz.png)
![work\ done=\eta * heat\ abosorbed=0.545* 19300=10520.392\ J](https://img.qammunity.org/2020/formulas/physics/college/14ye330gbr4y80jao0xuqkxj3dlcn645ar.png)
it is given that duration of each cycle is 1.16 sec so power output
![P=(W)/(T)=(10520.392)/(1.16)=9069.30\ W=9.069\ KW](https://img.qammunity.org/2020/formulas/physics/college/az9whr23rxvtpnoll8lrok3kcab9niyr8d.png)