Answer: (a) 0.002 (b)
![(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpryu5gz6b2hrulak2xp6643a8fps5q09c.png)
Explanation:
Given : The probability that the IC in a radio came from one of the sources =
![P(A)=P(B)=P(C)=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/got7p256dc2su2i36ufppc0bqmij431ag7.png)
![P(D|A)=0.001,\ \ P(D|B)=0.003,\ \ P(D|C)=0.002](https://img.qammunity.org/2020/formulas/mathematics/college/algn2jteuy4jvpurhmx8pfexpncpjbbq6e.png)
By using the law of total probability :-
![P(D)=P(A)\cdot P(D|A)+P(B)\cdot P(D|B)+P(C)\cdot P(D|C)\\\\\Rightarrow\ P(D)=(1)/(3)\cdot0.001+(1)/(3)\cdot0.003+(1)/(3)\cdot0.002\\\\\Rightarrow\ P(D)=0.002](https://img.qammunity.org/2020/formulas/mathematics/college/c28v889xbq7s8lj0pb9ukfaw96wdtr00iu.png)
Hence, the probability that any given radio will contain a defective IC : 0.002
By using Bayes theorem , we have
![P(A|D)=(P(A)\cdot P(D|A))/(P(D))\\\\\Rightarrow\ P(A|D)=((1)/(3)\cdot0.001)/(0.002)\\\\\Rightarrow\ P(A|D)=(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/college/lc6bsambvv4xg4he8gmnni3vmkcjx20ad5.png)
Hence, If a radio contains a defective IC, find the probability that it came from company A :
![(1)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpryu5gz6b2hrulak2xp6643a8fps5q09c.png)