Answer:
![(0.585,\ 0.635)](https://img.qammunity.org/2020/formulas/mathematics/college/zlnsvjn6slrfoyof80pthf9338rdnrz9m1.png)
Explanation:
Given : The number of adults surveyed : n= 4009
The number of adults indicated that they actively tried to avoid drinking regular soda or pop.=616
The proportion of adults indicated that they actively tried to avoid drinking regular soda or pop=
![(616)/(1009)\approx0.61](https://img.qammunity.org/2020/formulas/mathematics/college/rx0zlfxq0xogf6lvnq29ic2z15iev9vqvp.png)
Significance level :
![\alpha=1-0.90=0.10](https://img.qammunity.org/2020/formulas/mathematics/college/gh2zkpmg7w2illybrnkip3utipm4q6mucv.png)
Critical value =
![z_(\alpha/2)=1.645](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ppfu95k3932jlveab2gz0na5xhe4c849zz.png)
We assume that the sample is a simple random sample.
The confidence interval for population proportion is given by :-
![p\pm z_(\alpha/2)\sqrt{(p(1-p))/(n)}](https://img.qammunity.org/2020/formulas/mathematics/college/p9m06chotidciej9xkrg7jriq6irct43pj.png)
i.e.
![0.61\pm(1.645)\sqrt{(0.61(1-0.61))/(1009)}](https://img.qammunity.org/2020/formulas/mathematics/college/q5f9vx7zcw8llu62d8qc7jb06itflegghp.png)
![\approx0.61\pm0.025=(0.61-0.025,\ 0.61+0.025)\\\\=(0.585,\ 0.635)](https://img.qammunity.org/2020/formulas/mathematics/college/2ph5ldxirx4hgc405z8d6ufn1uln2a3cn6.png)
Hence, the 90% confidence interval for the proportion of all American adults who actively try to avoid drinking regular soda or pop is
![(0.585,\ 0.635)](https://img.qammunity.org/2020/formulas/mathematics/college/zlnsvjn6slrfoyof80pthf9338rdnrz9m1.png)